
1

Data mining, machine learning, and 
uncertainty reasoning

林偉川
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Positive and negative examples for concept learning

⊕mxae8
⊕mybe7
⊗nybe6
⊕myae5
⊗nzae4

⊗ (negative)nyae3
⊕nxbe2

⊕ (positive)nxae1
Classificationat3at2at1example
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Decision tree of example table
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Decision tree of example table
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TDIDT Algorithm
S … the set of examples
1. Find the “best” attribute at (if this can be found!!!)
2. Split the set S into the subset S1, S2, …, so that all 

examples in the subset Si have at=vi. Each subset 
constitutes a node in the decision tree

3. For each Si : if all examples in Si belong to the same 
class (⊗ or ⊕), then create a leaf of the decision tree
and label it with this class label (such as x or z) . 
Otherwise, perform the same procedure (go to step 1) 
with S=Si (such as at3) 
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TDIDT Algorithm
• The entire set of examples is split into subsets that are 

more easy to handle
• With a properly defined evaluation function, the 

TDIDT algorithm will derive the proper decision tree
• This Divide-and-conquer algorithm terminates

when all subsets are labeled or when no further 
attributes splitting the unlabelled sets are available

• Complete the full decision tree can cover the table 
example but they include some negative examples

• The most difficult is how to find the first best attribute
in step 1!!
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How to find the best attribute
• The evaluation function that is satisfied the 

following requirements:
– The function reaches its maximum when all subsets 

are homogeneous all examples in Si are ⊗ or all 
examples in Si are ⊕, the information about the 
attribute value is sufficient to decide whether the 
example is positive or negative

– The function reaches its minimum when 50% of the 
examples in each of the subsets are positive and 50%
are negative

– The function should be steep when close to the 
extremes (100% positive or vice versa) and flat when 
in the 50%-50% region
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Entropy
• Information is maximized when another important 

quantity “entropy” is minimized
• Entropy determines the extent of randomness, “un-

structuredness”, chaos in the data
• The entropy of subset Si can be calculated by means of 

the formula as shown in the next slice
• Pi

+ is the probability that a randomly taken example in  
Si is ⊕ and ni

+ is the number of ⊕ in Si

• Pi
- is the probability that a randomly taken example in  

Si is ⊗ and ni
- is the number of ⊗ in Si
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Entropy formula
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Attribute consideration
• Let the values of attributes at split the set S of examples 

into the subset Si, i=1,…k, then the entropy of the 
system of subsets Si is :

• H(Si) is the entropy of the subset Si; P(Si) is the 
probability of an example belonging to Si and can be 
estimated by the relative size of the subset Si in S: 
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Information gain
• Information gain achieved by the partitioning 

along at is measured by the entailed decrease in 
entropy: I(S, at)=H(S) - H(S,at)
where H(S) is the a priori entropy of S (before 
splitting) and H(S,at) is the entropy of the
system of subsets generated by the value of at
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Positive and negative examples for concept learning

⊕mxae8
⊕mybe7
⊗nybe6
⊕myae5
⊗nzae4

⊗ (negative)nyae3
⊕nxbe2

⊕ (positive)nxae1
Classificationat3at2at1example
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Computation result
• H(S) before splitting the attribute consideration

5 positive and 3 negative among 8 examples in S, 
the a priori entropy of the system S is:
H(S)= -P+logP+ + -P-logP-

= -(5/8)log(5/8) – (3/8)log(3/8) = 0.31025
• Log2=0.3010, log3=0.4771, log4=0.6021, 

log5=0.69897, log6=0.77815, log8=0.9031, 
log(5/8)=log5-log8=0.69897-0.9031=-0.20413
log(3/8)=log3-log8=0.4771-0.9031=0.426
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Computation result
• The number of ⊕ is about the same as the 

number of ⊗
• If the number of ⊕ were much larger than that of 
⊗, we should have a high chance of a correct 
guess of the class by simply assuming that it is 
always ⊕ this would correspond to small 
entropy
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Entropy of the different partition
• at1 has Sa and Sb, it can be computed 

individually
Sa has 5 items (3 ⊕ and 2 ⊗)
Sb has 3 items (2 ⊕ and 1 ⊗)

• H(Sa)=-(3/5)log(3/5)-(2/5)log(2/5)=0.29231
H(Sb)=-(2/3)log(2/3)-(1/3)log(1/3)=0.276
H(S,at1)=5/8*(0.29231)+3/8*(0.276)=0.28619 
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Entropy of the different partition

• at3 has Sm and Sn, it can be computed 
individually
Sm has 3 items (3 ⊕)
Sn has 5 items (2 ⊕ and 3 ⊗)

H(Sm)=-1 log(1)- 0 log(0)=0
H(Sn)=-(2/5)log(2/5)-(3/5)log(3/5)=0.29231
H(S,at3)=3/8*(0)+5/8*(0.29234)=0.1826937
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Entropy of the different partition

• at2 has Sx ,Sy and Sz, it can be computed 
individually
Sx has 3 items (3 ⊕)
Sy has 4 items (2 ⊕ and 2 ⊗)
Sz has 1 items (1 ⊗)
H(Sx)=-(1)log(1)-(0)log(0)=0
H(Sy)=-(2/4)log(2/4)-(2/4)log(2/4)=0.3010
H(Sz)=-(0)log(0)-(1)log(1)=0
H(S,at2)=3/8*(0)+1/8*(0)+4/8*(0.3010)=0.1505
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Information gain comparison
• I(S, at1)=H(S)-H(S,at1)

=0.31025- 0.28619 =0.02406
• I(S, at2)=H(S)-H(S,at2)

=0.31025- 0.1505=0.15975
• I(S, at3)=H(S)-H(S,at3)

=0.31025- 0.1826937 =0.1275563
• at2 has the highest information gain, and should 

be selected as the root of the tree
• Use of entropy is just one of many possibilities
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Decision tree of example table
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Example for homework

⊗tnzf4
⊗rnzf5
⊗snxf6

⊗tnyf3
⊗tmyf2
⊗smxf1
⊕rnxe4
⊕snye3
⊕rmxe2
⊕rnye1

Classificationat3at2at1example
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計算複雜程度
‧本班考試成績的平均值，是針對本班所有同學的考
試成績而言。所以“平均值”是指的是廣義集合內
各個個體的標誌值的平均值。

‧平均值=（每個個體的標誌值的合計值）/ 個體總數

‧如果廣義集合的個體總數（N）多於100個，用這種
公式求平均值容易出現資料登錄差錯。統計學裏還
有其他的計算公式就可以減少錯誤
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計算複雜程度

• 60個同學的考試分數(分佈函數值) 為100分有
20人，90分有30人，80分有10人，平均值=
（20×100+30×90+10×80）/ 60 =91.67

• 如果用每個同學的分數相加要做60次加法，
而這裏僅做了7次計算就得到出了平均值為
91.67，這顯然比前一個公式簡單
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計算複雜程度
• 平均值=（∑有該標誌值的個體的數量×該標誌
值）/ 個體總數

• 現在把求平均值公式做一些變形就得到了廣
義集合的另外一個特徵量 ---複雜程度。

• 變形 平均值的公式裏不是有該標誌值嗎？
把它改成“具有該標誌值的個體在總體中占的
百分比的對數”

• 平均值公式裏最後不是要用廣義集合內的個
體總數N來除嗎？現在省去這個計算，但是在
公式最前面加個負號

24

計算複雜程度
• 複雜程度=-∑每個標誌值的分佈函數值×具有該標誌
值的個體在總體中占的百分比的對數

• 如果用C表示複雜程度、用 表示各個標誌值具有的
個體的數量、用N 表示廣義集合內個體的總數，複雜
程度的公式可以寫為

• 仍以學生考試成績為例，學生成績的複雜程度
=-[20*log(20/60)+30*log(30/60)+10*log(10/60)] = 26.35

• 26.35這個數字描述了60個同學考試成績的複雜程度
• 如果全班同學都是清一色的100分。公式計算的結果
是學生考試成績的複雜程度=-60×log（60/60 ) = 0
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複雜程度的單位：bits
• 計算複雜程度的公式中要用“對數”，而對數
的值與求對數用什麼為“底”有關。這引導我
們從規定“對數的底”是什麼的角度去確定複
雜程度的單位。如果規定計算複雜程度時對
數都“以2為底”，其複雜程度的單位就稱為
“Bit”

• “Bit”是描述資訊存儲量大小的單位。為什麼
複雜程度要用電腦界的單位？電腦界借用了
表示資訊的單位（Bit）而複雜程度的計算公
式與資訊量的計算公式是一致的，所以我們
也借用資訊理論中對資訊的計量單位。
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複雜程度的單位：bits
• 如果計算時用的是以10位底的對數，也可以用
對數換底公式換算成Bit，把以10為底的對數
值乘以3.3219就得到了以2為底的對數值(比特
值)。即log2x =3.321928*log10x

• 有個例子是擲了1000次的硬幣，正反面朝上的
事件各為500次。由這個結局組成的廣義集合
的複雜程度301.0 (=-
[500×log(500/1000)+[500×log(500/1000)]
=-1000×log(1/2)=301.0)，把它乘3.321928就
得到了以Bit單位的複雜程度，即
301×3.321928=1000Bit。
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複雜程度的單位：bits
• 對數的計算現在都用電腦或者計數器完成。
而對數都是10位底或者以自然數e
（2.71828）為底。所以在一些場合這都要利
用對數換底公式去換算成“Bit”。

• 如果直接用以10為底計算對數，得到的複雜
程度應當稱為Hartley，以自然數e為底計算對
數而得到的複雜程度應當稱為nat。這些單位
也是從資訊理論中借來的，但是它們都沒有
“Bit”那麼常用。
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Computation result
• H(S) before splitting the attribute consideration

5 positive and 3 negative among 8 examples in S, 
the a priori entropy of the system S is:
H(S)= -P+logP+ + -P-logP-

= -(5/8)log(5/8) – (3/8)log(3/8) = 0.31025
• log2x =3.321928*log10x
• H(S)= 0.31025 * 3.321928 = 0.954 bits
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Entropy of the different partition

• at1 has Sa and Sb, it can be computed 
individually
Sa has 5 items (3 ⊕ and 2 ⊗)
Sb has 3 items (2 ⊕ and 1 ⊗)
H(Sa)=-(3/5)log(3/5)-(2/5)log(2/5)=0.29231
H(Sb)=-(2/3)log(2/3)-(1/3)log(1/3)=0.276
H(S,at1)=5/8*(0.29231)+3/8*(0.276)=0.28619  = 

0.28619 * 3.321928 = 0.951bits
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Entropy of the different partition

• at3 has Sm and Sn, it can be computed 
individually
Sm has 3 items (3 ⊕)
Sn has 5 items (2 ⊕ and 3 ⊗)
H(Sm)=-1 log(1)- 0 log(0)=0
H(Sn)=-(2/5)log(2/5)-(3/5)log(3/5)=0.29231
H(S,at3)=3/8*(0)+5/8*(0.29234)=0.1826937 
= 0.1826937 * 3.321928 = 0.6069bits
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Entropy of the different partition
• at2 has Sx ,Sy and Sz, it can be computed 

individually
Sx has 3 items (3 ⊕)
Sy has 4 items (2 ⊕ and 2 ⊗)
Sz has 1 items (1 ⊗)
H(Sx)=-(1)log(1)-(0)log(0)=0
H(Sy)=-(2/4)log(2/4)-(2/4)log(2/4)=0.3010
H(Sz)=-(0)log(0)-(1)log(1)=0

H(S,at2)=3/8*(0)+1/8*(0)+4/8*(0.3010)=0.1505
=0.1505 * 3.321928 = 0.5bits
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Information gain comparison
• I(S, at1)=H(S)-H(S,at1)

= 0.954 bits – 0.951bits =0.03bits
• I(S, at2)=H(S)-H(S,at2)

= 0.954 bits – 0.5bits=0.454 bits
• I(S, at3)=H(S)-H(S,at3)

= 0.954 bits - 0.6069bits =0.347bits
• at2 has the highest information gain, and should 

be selected as the root of the tree
• Use of entropy is just one of many possibilities
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Pruning the trees
• A few pitfalls can put the use of a decision tree in question 

over-fitting
• A tree branch (ending with a class label) might have been 

created from examples that are noisy the attribute 
values or class labels are erroneous

• This branch or some of its decision tests will be 
misleading

• If the number of attributes is large, the tree may contain 
tests on random features that are irrelevant for correct 
classifications
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Pruning the tree
• Very large trees are hard to interpret and the user 

will perceive them as a black box representation
• It may be beneficial to prune the resulting tree
• 2 approaches to prune the decision tree

– On-line pruning: stop the tree growing when the 
information gain caused by the partitioning of the 
example set falls below a certain threshold

– Post-pruning: prune out some of the branches after the 
tree has been completed
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Tree simplification (On-line pruning)
• Minimal-error pruning aims at pruning the tree to 

such an extent that the overall expected 
classification error on new examples is 
minimized the classification error is estimated 
for each node in the tree

• In the leaves, the error is estimated using one of 
the methods for estimating the probability that a 
new object falling into this leaf will be 
misclassified
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Tree simplification (On-line pruning)
• Suppose that N is the number of examples that 

end up in the leaf, and e is the number of these 
examples that are misclassified at this leaf. The 
Laplace estimate (e+1)/(N+k) (where k is the 
number of all the classes) is used to estimate the 
expected error
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Tree simplification (On-line pruning)
• For a non-leaf node of the decision tree, its 

classification error is estimated as the weighted 
sum of the classification errors of the node’s 
subtree. The weights are calculated as relative 
frequencies of examples passing from the node 
into the corresponding sub-trees

• The non-leaf error estimate is called a back-up 
error (threshold!!)

38

Tree simplification (On-line pruning)
• If the error estimate is lower than the backup 

error, the subtrees will be pruned out
• The process of pruning subtrees starts at the 

bottom levels of the tree and propagating 
upwards as long as the backed-up errors are 
higher than the ‘static estimates’
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Tree simplification
• Another type of tree pruning by carrying out a 

kind of constructive induction
• Learning system strives to create new attributes

as logical expressions over the attributes 
provided by the teacher

• Constructive induction can be profitable where a 
sub-tree is replicated in more than one position in 
the tree

40

Constructive induction in decision tree

at1

at2

⊕

⊕

⊗

⊗

no yes

at3

no

no

yes

yes

at1

at4

⊕

⊗

⊗

no yes

no
yes

at4=at2 ΛΛ at3
A new attribute, a4 is 
constructed
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The replication problem in decision tree

at3

⊕

⊕ ⊗

at4

no

no

yes

yes

at3

⊕

⊕ ⊗

at4

no

no

yes

yes

at1

⊗

no

yes

at4 yesno
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Simplified version of a decision tree

at6

⊕
⊗

no
yes

at1

⊗

no

yes

at4 yesno

at6

⊕
⊗

no
yes
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Threshold position
• Decision trees can also be induced from 

numerical attributes not only symbolic attributes
• On possible method is to provide one additional 

step, the binarization of the numerical attributes
• At each node, the respective attribute value is 

tested against threshold Ti
• Threshold position in the range of values can be 

determined by entropy
• First order all the examples according to the best 

attribute and observe the classification values

44

Cope with numeric data
• Thresholds the numerical ranges into pairs of 

subintervals to be treated as symbols
• Decision tree built from numeric data as shown

⊕

at1

< T1

at6

⊕
⊗

≥ T1

≥ T2

< T2
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Threshold position
• The classification value of ⊕ and ⊗ decompose 

the set of 80 examples into 4 regions
• The candidate splitting cuts lie on the boundaries 

between the regions the cut with the highest 
information gain is selected

12 ⊕⊕ 28 ⊗⊗ 25 ⊕⊕ 15 ⊗⊗

S1 S2 S3

46

Numeric version of TDIDT Algorithm
1. Use the entropy measure to find the optimal 

split of the numeric attributes
2. Determine the attribute whose optimal split

maximizes entropy and partition the example 
set along this attribute into 2 subsets

3. If the termination criterion is not satisfied, 
repeat the procedure recursively for each 
subset

4. With each new sub-tree, the splitting cuts
must be recalculated


