
1

1

Chapter 3 - Introduction to Java Applets

•Applet

–Program that runs in

•appletviewer (test utility for applets)

•Web browser (IE, Communicator) IIS setting !!!

–Executes when HTML (Hypertext Markup Language)
document containing applet is opened and downloaded

–Applications run in command windows

2

The TicTacToe Applet

• Running applets
– In command prompt, change to demo subdirectory of applet
cd c:\j2sdk1.4.2_03\demo\applets
cd appletDirectoryName

– There will be an HTML file used to execute applet
– Type appletviewer example1.html

• appletviewer loads the html file specified as its command-
line argument

• From the HTML file, determines which applet to load
• Applet will run, Reload and Quit commands under Applet

menu

2

3

Java applet running environment

• Run from the click file and invoke the IE browser
• Use the MS-DOC command mode and type in the

command appletviewer ***.htm
– Remember to setup the JRE environment variable

• set path=%path%;c:\j2sdk1.4.2_03\bin
• set CLASSPATH=.;C:\j2sdk1.4.2_03\lib\tools.jar

4

The TicTacToe Applet
• You start as player "X"

Fig. 3.2 Sample execution of the TicTacToe applet.

3

5

The DrawTest Applet

Fig. 3.4 Sample execution of applet DrawTest.

6

The Java2D Applet
• Demonstrates 2D drawing capabilities built into Java2

4

7

A Simple Java Applet: Drawing a String

• Now, create applets of our own
– Take a while before we can write applets like in the demos
– Cover many of same techniques

• Upcoming program
– Create an applet to display
"Welcome to Java Programming!"

– Show applet and HTML file, then discuss them line by line

8

Java applet

Program Output

1 // Fig. 3.6: WelcomeApplet.java
2 // A first applet in Java.
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet
9
10 public class WelcomeApplet extends JApplet {
11
12 // draw text on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 // draw a String at x-coordinate 25 and y-coordinate 25
19 g.drawString("Welcome to Java Programming!", 25, 25);
20
21 } // end method paint
22
23 } // end class WelcomeApplet

extends allows us to inherit the
capabilities of class JApplet.

Method paint is guaranteed to
be called in all applets. Its first
line must be defined as above.

5

9

A Simple Java Applet: Drawing a String

– Import predefined classes grouped into packages
• import statements tell compiler where to locate classes used
• When you create applets, import the JApplet class

(package javax.swing)
• import the Graphics class (package java.awt) to draw

graphics
– Can draw lines, rectangles ovals, strings of characters

• import specifies directory structure
– Applets have at least one class definition (like applications)

• Rarely create classes from scratch
– Use pieces of existing class definitions
– Inheritance - create new classes from old ones (ch. 15)

5 import java.awt.Graphics; // import class Graphics

8 import javax.swing.JApplet; // import class JApplet

10

A Simple Java Applet: Drawing a String

– Begins class definition for class WelcomeApplet
– public class name must be file name
– File can only have one public class

– extends followed by class name
• Indicates class to inherit from (JApplet)

– JApplet : superclass (base class)
– WelcomeApplet : subclass (derived class)
– Inherit methods, do not have to define them all
– Do not need to know every detail of class JApplet

• WelcomeApplet now has methods and data of JApplet

10 public class WelcomeApplet extends JApplet {

6

11

A Simple Java Applet: Drawing a String

– Our class inherits method paint from JApplet
• By default, paint has empty body
• Override (redefine) paint in our class

– Methods paint, init, and start
• Guaranteed to be called automatically
• Our applet gets "free" version of these by inheriting from JApplet

– Free versions have empty body (do nothing)
– Every applet does not need all three methods

• Override the ones you need
– Applet container “draws itself” by calling method paint

13 public void paint(Graphics g)

12

A Simple Java Applet: Drawing a String

– Method paint
• Lines 13-21 are the definition of paint
• Draws graphics on screen
• void indicates paint returns nothing when finishes task
• Parenthesis define parameter list - where methods receive data

to perform tasks
– Normally, data passed by programmer, as in
JOptionPane.showMessageDialog

• paint gets parameters automatically
– Graphics object used by paint

• Mimic paint's first line

13 public void paint(Graphics g)

7

13

A Simple Java Applet: Drawing a String

– Calls version of method paint from superclass JApplet
– Should be first statement in every applet’s paint method

– Body of paint
• Method drawString (of class Graphics)
• Called using Graphics object g and dot operator (.)
• Method name, then parenthesis with arguments

– First argument: String to draw
– Second: x coordinate (in pixels) location
– Third: y coordinate (in pixels) location

– Java coordinate system
• Measured in pixels (picture elements)
• Upper left is (0,0)

16 super.paint(g);

19 g.drawString("Welcome to Java Programming!", 25, 25);

14

Compile and Execute WelcomeApplet

• Running the applet
– Compile

• javac WelcomeApplet.java
• If no errors, bytecodes stored in WelcomeApplet.class

– Create an HTML file
• Loads the applet into appletviewer or a browser
• Ends in .htm or .html

– To execute an applet
• Create an HTML file indicating which applet the browser (or
appletviewer) should load and execute

8

15

Compile and Execute WelcomeApplet

– Simple HTML file (WelcomeApplet.html)
• Usually in same directory as .class file
• Remember, .class file created after compilation

– Line 2 - begins <applet> tag
• Specifies code to use for applet
• Specifies width and height of display area in pixels

– Line 3 - ends </applet> tag
– appletviewer only understands <applet> tags

• Ignores everything else
• Minimal browser

– Executing the applet
• appletviewer WelcomeApplet.html
• Perform in directory containing .class file
• does not not load all classes

– Compiler only loads classes it uses

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height = "40">
3 </applet>
4 </html>

16

Two More Simple Applets: Drawing Strings and Lines

• More applets
– First example

• Display two lines of text
• Use drawString to simulate a new line with two
drawString statements

– Second example
• Method g.drawLine(x1, y1, x2, y2)

– Draws a line from (x1, y1) to (x2, y2)
– Remember that (0, 0) is upper left

• Use drawLine to draw a line beneath and above a string

9

17
1 // Fig. 3.8: WelcomeApplet2.java
2 // Displaying multiple strings in an applet.
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet
9
10 public class WelcomeApplet2 extends JApplet {
11
12 // draw text on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 // draw two Strings at different locations
19 g.drawString("Welcome to", 25, 25);
20 g.drawString("Java Programming!", 25, 40);
21
22 } // end method paint
23
24 } // end class WelcomeApplet2

1. import

2. Class
WelcomeApplet2
(extends JApplet)

3. paint

3.1 drawString

3.2 drawString
on same x
coordinate, but
15 pixels down

The two drawString
statements simulate a newline. In
fact, the concept of lines of text
does not exist when drawing
strings.

18

HTML file

Program Output

1 <html>
2 <applet code = "WelcomeApplet2.class" width = "300" height = "60">
3 </applet>
4 </html>

10

19

WelcomeLines.java

2. Class
WelcomeLines
(extends JApplet)

3. paint

3.1 drawLine

3.2 drawLine

3.3 drawString

1 // Fig. 3.10: WelcomeLines.java
2 // Displaying text and lines
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet
9
10 public class WelcomeLines extends JApplet {
11
12 // draw lines and a string on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 // draw horizontal line from (15, 10) to (210, 10)
19 g.drawLine(15, 10, 210, 10);
20
21 // draw horizontal line from (15, 30) to (210, 30)
22 g.drawLine(15, 30, 210, 30);
23
24 // draw String between lines at location (25, 25)
25 g.drawString("Welcome to Java Programming!", 25, 25);
26
27 } // end method paint
28
29 } // end class WelcomeLines

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height
= "40">
3 </applet>
4 </html>

20

Two More Simple Applets: Drawing Strings and Lines

• Method drawLine of class Graphics
– Takes as arguments Graphics object and line’s end points
– X and y coordinate of first endpoint
– X and y coordinate of second endpoint

11

21

Another Java Applet: Add Floating-Point Numbers

• Next applet
– Mimics application for adding two integers (Fig 2.9)

• This time, use floating point numbers (numbers with a decimal
point)

– Using primitive data types
• Double – double precision floating-point numbers
• Float – single precision floating-point numbers

– Show program, then discuss

22

AdditionApplet.java

1. import

2. Class
AdditionApplet
(extends JApplet)

3. Instance variable

4. init

4.1 Declare variables

4.2
showInputDialog

4.3 parseDouble

2 // Adding two floating-point numbers
3 import java.awt.Graphics; // import class Graphics

5
6 public class AdditionApplet extends JApplet {
7 double sum; // sum of the values entered by the user
8
9 public void init()
10 {
11 String firstNumber, // first string entered by user
12 secondNumber; // second string entered by user
13 double number1, // first number to add
14 number2; // second number to add
15
16 // read in first number from user
17 firstNumber =
18 JOptionPane.showInputDialog(
19 "Enter first floating-point value");
20
21 // read in second number from user
22 secondNumber =
23 JOptionPane.showInputDialog(
24 "Enter second floating-point value");
25
26
27 // convert numbers from type String to type double

1 // Fig. 3.12: AdditionApplet.java
2 // Adding two floating-point numbers.
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.*; // import package javax.swing
9
10 public class AdditionApplet extends JApplet {
11 double sum; // sum of values entered by user
12
13 // initialize applet by obtaining values from user
14 public void init()
15 {
16 String firstNumber; // first string entered by user
17 String secondNumber; // second string entered by user
18 double number1; // first number to add
19 double number2; // second number to add
20
21 // obtain first number from user
22 firstNumber = JOptionPane.showInputDialog(
23 "Enter first floating-point value");
24
25 // obtain second number from user
26 secondNumber = JOptionPane.showInputDialog(
27 "Enter second floating-point value");
28
29 // convert numbers from type String to type double
30 number1 = Double.parseDouble(firstNumber);
31 number2 = Double.parseDouble(secondNumber);
32

12

23

5. Draw applet
contents

5.1 Draw a rectangle

5.2 Draw the results

HTML file

31 // add the numbers

32 sum = number1 + number2;

33 }

34

35 public void paint(Graphics g)

36 {

37 // draw the results with g.drawString

38 g.drawRect(15, 10, 270, 20);

39 g.drawString("The sum is " + sum, 25, 25);

40 }

41 }

1 <html>

2 <applet code="AdditionApplet.class" width=300 height=50>

3 </applet>

4 </html>

33 // add numbers
34 sum = number1 + number2;
35 }
36
37 // draw results in a rectangle on applet’s background
38 public void paint(Graphics g)
39 {
40 // call inherited version of method paint
41 super.paint(g);
42
43 // draw rectangle starting from (15, 10) that is 270
44 // pixels wide and 20 pixels tall
45 g.drawRect(15, 10, 270, 20);
46
47 // draw results as a String at (25, 25)
48 g.drawString("The sum is " + sum, 25, 25);
49
50 } // end method paint
51
52 } // end class AdditionApplet

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height = "40">
3 </applet>
4 </html>

drawRect takes the upper left coordinate, width,
and height of the rectangle to draw.

24

Program Output

13

25

Another Java Applet: Adding Floating-Point Numbers

– Instance variable declaration
• Each object of class gets own copy of the instance variable
• Declared in body of class, but not inside methods

– Variables declared in methods are local variables
– Can only be used in body of method

11 double sum; // sum of values entered by user

26

– Primitive data type double
• Used to store floating point (decimal) numbers

– Method init
• Normally initializes instance variables and applet class
• Guaranteed to be first method called in applet
• First line must always appear as above

– Returns nothing (void), takes no arguments

11 double sum; // sum of values entered by user

14 public void init()

Another Java Applet: Adding Floating-Point Numbers

14

27

– Declare variables
– Two types of variables

• Reference variables (called references)
– Refer to objects (contain location in memory)

• Objects defined in a class definition
• Can contain multiple data and methods

– paint receives a reference called g to a Graphics
object

– Reference used to call methods on the Graphics object

16 String firstNumber; // first string entered by user
17 String secondNumber; // second string entered by user
18 double number1; // first number to add
19 double number2; // second number to add

Another Java Applet: Adding Floating-Point Numbers

28

– Distinguishing references and variables
• If data type is a class name, then reference

– String is a class
– firstNumber, secondNumber

• If data type a primitive type, then variable
– double is a primitive data type
– number1, number2

16 String firstNumber; // first string entered by user
17 String secondNumber; // second string entered by user
18 double number1; // first number to add
19 double number2; // second number to add

Another Java Applet: Adding Floating-Point Numbers

15

29

• Method JOptionPane.showInputDialog
• Prompts user for input with string
• Enter value in text field, click OK

– If not of correct type, error occurs
• Returns string user inputs
• Assignment statement to string

– Lines 26-27: As above, assigns input to secondNumber

22 firstNumber = JOptionPane.showInputDialog(
23 "Enter first floating-point value");

Another Java Applet: Adding Floating-Point Numbers

30

– static method Double.parseDouble
• Converts String argument to a double
• Returns the double value
• Remember static method syntax

– ClassName.methodName(arguments)

30 number1 = Double.parseDouble(firstNumber);
31 number2 = Double.parseDouble(secondNumber);

Another Java Applet: Adding Floating-Point Numbers

16

31

– Ends method init
• appletviewer (or browser) calls inherited method start
• start usually used with multithreading

– Advanced concept, in Chapter 15
– We do not define it, so empty definition in JApplet used

• Next, method paint called

– Method drawRect(x1, y1, width, height)
• Draw rectangle, upper left corner (x1, y1), specified width

and height
• Line 45 draws rectangle starting at (15, 10) with a width of 270

pixels and a height of 20 pixels

33 }

45 g.drawRect(15, 10, 270, 20);

Another Java Applet: Adding Floating-Point Numbers

32

– Sends drawString message (calls method) to Graphics
object using reference g

• "The sum is" + sum - string concatenation
– sum converted to a string

• sum can be used, even though not defined in paint
– Instance variable, can be used anywhere in class
– Non-local variable

48 g.drawString("The sum is " + sum, 25, 25);

Another Java Applet: Adding Floating-Point Numbers

17

33

Viewing Applets in a Web Browser

• Applets can execute on Java-enabled browsers
– Netscape Navigator 6 supports Java 2 (section 3.6.1)
– Use Java Plug-in to execute Java 2 applets on other browsers

(section 3.6.2)

34

Viewing Applets in Netscape Navigator 6

• Netscape Navigator 6 supports Java 2
– Default installation component
– able to load applet HTML into browser and execute applet
– Download browser at www.netscape.com
– After installing, open applet HTML file using Open File…

menu item in File menu

18

35

Viewing Applets in Other Browsers Using the Java
Plug-In

• Java Plug-in support from Sun
– Applet HTML file must indicate use of Java Plug-in

• Convert <applet> and </applet> tags to plug-in-loading tags
• Sun provides Java Plug-in 1.3 HTML Converter for conversion

– Download and info at java.sun.com/products/plugin
– Executable in classes subdirectory of converter directory

• Batch file HTMLConverter.bat on Windows
• HTML Converter.sh shell script for Linux/UNIX

36

Viewing Applets in Other Browsers Using the Java
Plug-In

• Java Plug-in HTML Converter process
– Select directory containing HTML files to convert

• Click Browse button in Converter to open file chooser to
select directory

• Or type in the directory
– Select conversion template to support browsers

• Defaults: Microsoft Internet Explorer
• Use Template File drop-down list

– Click Convert… button to convert
• Might need to download J2RE if not installed
• After conversion, progress and status window pops up
• Able to use applet HTML in supported browser

19

37

Viewing Applets in Other Browsers Using the Java
Plug-In

Fig. 3.15 Java Plug-in HTML Converter window.

38

Viewing Applets in Other Browsers Using the Java
Plug-In

Fig. 3.17 Selecting the template used to convert the HTML files.

20

39

Java Applet Internet and World Wide Web
Resources

• Many Java applet resources available
– http://java.sun.com/applets/
– Many resources and free applets

• Has demo applets from J2SDK
– Sun site developer.java.sun.com/developer

• Tech support, discussion forums, training, articles, links, etc.
• Registration required

– www.jars.com
• Rates applets, top 1, 5 and 25 percent
• View best applets on web

40

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

• Identifying classes in a System
– Nouns of system to implement elevator simulation

Nouns (and noun phrases) in
the p rob lem sta tement

company elevator system graphical user interface (GUI)
office building elevator shaft elevator car
elevator display person
software-simulator application model floor (first floor; second floor)
passenger bell inside the elevator First Floor GUI button
floor door light on that floor Second Floor GUI button
user of our application energy audio
floor button capacity elevator music
elevator button
Fig. 3.19 Nouns (and noun phrases) in p rob lem sta tement.

21

41

• Not all nouns pertain to model (not highlighted)
– Company and building not part of simulation
– Display, audio, and elevator music pertain to presentation
– GUI, user of application, First and Second Floor buttons

• How user controls model only
– Capacity of elevator only a property
– Energy preservation not modeled
– Simulation is the system
– Elevator and elevator car are same references
– Disregard elevator system for now

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

42

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

• Nouns highlighted to be implemented in system
– Elevator button and floor button separate functions
– Capitalize class names

• Each separate word in class name also capitalized
• ElevatorModel, ElevatorShaft, Elevator,
Person, Floor, ElevatorDoor, FloorDoor,
ElevatorButton, FloorButton, Bell, and Light

22

43

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

• Using UML to model elevator system
– Class diagrams models classes and relationships

• Model structure/building blocks of system

• Representing class Elevator using UML

– Top rectangle is class name
– Middle contains class’ attributes
– Bottom contains class’ operations

Elevator

44

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

• Class associations using UML
– Elided diagram

• Class attributes and operations ignored
• Class relation among ElevatorShaft, Elevator and
FloorButton

• Solid line is an association, or relationship between classes
• Numbers near lines express multiplicity values

– Indicate how many objects of class participate association

Re quests
FloorButto n

ElevatorShaft

Elevator

1

1 1

2
2 1

Resets
Sig na ls
arriva l

23

45

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

– Diagram shows two objects of class FloorButton
participate in association with one object of
ElevatorShaft

– FloorButton has two-to-one relationship with
ElevatorShaft

Sym b o l M e a n ing
0 None.
1 One.
m An integer value.
0..1 Zero or one.
m, n m or n
m ..n At least m , but not more than n.
* Zero or more.
0..* Zero or more
1..* One or more
Fig . 3.22 M ult ip lic ity typ e s.

46

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

– Associations can be named
• In diagram, “Requests” indicates association and arrow

indicates direction of association
– One object of FloorButton requests one object of class
Elevator

– Similar context with “Resets” and “Signals Arrival”
– Aggregation relationship

• Implies whole/part relationship
– Some object “has” some object

• Object attached with diamond is “owner”
– Object on other end is the “part”

• In diagram, elevator shaft “has an” elevator and two floor
buttons

24

47

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

Li g h t El e v a to rM o d e l Fl o o r

F l o o r D o o r

El e v a to rD o o r

E le v a t o r Sh a ft

El e v a t o r

B e l l

F l o o rB u t to n

Ele v a to rB u t t o n

P e rso n

C re a t e s

Pr e sse s

Pr e sse s

1

1

1

1

1

1
1

1 22

1

1

1
1 1

1

1

2

1

1

0 . .*

2

1

R e q u e st s

1

1

Ri d e s

1

1

Sig n a ls to
m o v e

R e se t s

R e se t s

W a l k s
a c r o ss

O p e n s

O p e n s

1

R in g s

Tu rn s
o n / o ff

Si g n a l s
a rr iv a l

1

1

1

1

Fig. 3.23 Class diagram for the elevator model.

48

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

f i rs t F lo o rL i g h t : L i g h t

: E l e v a t o rM o d e l

f i rs t F lo o r : F lo o r

f ir s tF l o o r D o o r : F l o o r D o o r

: E l e v a t o rD o o r

: E le v a t o r Sh a f t

: E le v a t o r

: Be l l

f i rs tF l o o r B u t to n : F lo o rB u t to n

: E le v a t o r B u t t o n

se c o n d F l o o r : F l o o r

s e c o n d F l o o r B u t t o n : F l o o r Bu t t o nse c o n d F lo o rD o o r : Fl o o rD o o r

se c o n d F l o o r Li g h t : Li g h t

Fig. 3.24 Object diagram of an empty building in our elevator model.

25

49

(Optional Case Study) Thinking About Objects:
Identifying the Classes in a Problem Statement

• Object diagrams
– Model objects (instances of classes) at a specific time in

program execution
– Snapshot of system structure while running

• Information about participation of objects at that time
– Links

• Relationships between objects represented as solid lines

• Object diagram when no people in building
– No objects of class Person exist in system at this point
– Objects written in form objectName:ClassName

• UML permits omission of object names instantiated only once
• If object name unknown, just include class name

