
Question 12

A class can not be called "tightly encapsulated" unless which of the following are true?

a. The data members can not be directly manipulated by external code.

b. The class is declared final.

c. It has no public mutator methods.

d. The superclass is tightly encapsulated.

Question 13

class A {
 String s1 = "A.s1"; String s2 = "A.s2";
}
class B extends A {
 String s1 = "B.s1";
 public static void main(String args[]) {
 B x = new B(); A y = (A)x;
 System.out.println(x.s1+" "+x.s2+" "+y.s1+" "+y.s2);
}}

What is the result of attempting to compile and run the program?

a. Prints: B.s1 A.s2 B.s1 A.s2

b. Prints: B.s1 A.s2 A.s1 A.s2

c. Prints: A.s1 A.s2 B.s1 A.s2

d. Prints: A.s1 A.s2 A.s1 A.s2

e. Run-time error

f. Compile-time error

g. None of the above

Question 14

class A {void m1(A a) {System.out.print("A");}}
class B extends A {void m1(B b) {System.out.print("B");}}
class C extends B {void m1(C c) {System.out.print("C");}}
class D extends C {
 void m1(D d) {System.out.print("D");}
 public static void main(String[] args) {
 A a1 = new A(); B b1 = new B();
 C c1 = new C(); D d1 = new D();
 d1.m1(a1); d1.m1(b1); d1.m1(c1);
}}

What is the result of attempting to compile and run the program?

a. Prints: AAA

b. Prints: ABC

c. Prints: DDD

d. Prints: ABCD

e. Compile-time error

f. Run-time error

g. None of the above

Question 15

class C {
 void printS1() {System.out.print("C.printS1 ");}
 static void printS2() {System.out.print("C.printS2 ");}
}
class D extends C {
 void printS1(){System.out.print("D.printS1 ");}
 void printS2() {System.out.print("D.printS2 ");}
 public static void main (String args[]) {
 C c = new D(); c.printS1(); c.printS2();
}}

What is the result of attempting to compile and run the program?

a. Prints: C.printS1 C.printS2

b. Prints: C.printS1 D.printS2

c. Prints: D.printS1 C.printS2

d. Prints: D.printS1 D.printS2

e. Run-time error

f. Compile-time error

g. None of the above

Question 16

class A {}
class B extends A {}
class C extends B {}
class D {
 void m1(A a) {System.out.print("A");}
 void m1(B b) {System.out.print("B");}
 void m1(C c) {System.out.print("C");}
 public static void main(String[] args) {
 A c1 = new C(); B c2 = new C();
 C c3 = new C(); D d1 = new D();

 d1.m1(c1); d1.m1(c2); d1.m1(c3);
}}

What is the result of attempting to compile and run the program?

a. Prints: AAA

b. Prints: ABC

c. Prints: CCC

d. Compile-time error

e. Run-time error

f. None of the above

Question 17

class E {
 void printS1(){System.out.print("E.printS1 ");}
 static void printS2() {System.out.print("E.printS2");}
}
class F extends E {
 void printS1(){System.out.print("F.printS1 ");}
 static void printS2() {System.out.print("F.printS2");}
 public static void main (String args[]) {
 E x = new F(); x.printS1(); x.printS2();
}}

What is the result of attempting to compile and run the program?

a. Prints: E.printS1 E.printS2

b. Prints: E.printS1 F.printS2

c. Prints: F.printS1 E.printS2

d. Prints: F.printS1 F.printS2

e. Run-time error

f. Compile-time error

g. None of the above

Question 18

class A {void m1(A a) {System.out.print("A");}}
class B extends A {void m1(B b) {System.out.print("B");}}
class C extends B {void m1(C c) {System.out.print("C");}}
class D {
 public static void main(String[] args) {
 A c1 = new C(); B c2 = new C();
 C c3 = new C(); C c4 = new C();

 c4.m1(c1); c4.m1(c2); c4.m1(c3);
}}

What is the result of attempting to compile and run the program?

a. Prints: AAA

b. Prints: ABC

c. Prints: CCC

d. Compile-time error

e. Run-time error

f. None of the above

Question 19

class P {
 static void printS1(){System.out.print("P.printS1 ");}
 void printS2() {System.out.print("P.printS2 ");}
 void printS1S2(){printS1();printS2();}
}
class Q extends P {
 static void printS1(){System.out.print("Q.printS1 ");}
 void printS2(){System.out.print("Q.printS2 ");}
 public static void main(String[] args) {
 new Q().printS1S2();
}}

What is the result of attempting to compile and run the program?

a. Prints: P.printS1 P.printS2

b. Prints: P.printS1 Q.printS2

c. Prints: Q.printS1 P.printS2

d. Prints: Q.printS1 Q.printS2

e. Run-time error

f. Compile-time error

g. None of the above

Question 20

class A {void m1(A a) {System.out.print("A");}}
class B extends A {void m1(B b) {System.out.print("B");}}
class C extends B {void m1(C c) {System.out.print("C");}}
class D {
 public static void main(String[] args) {
 A c1 = new C(); C c2 = new C(); c1.m1(c2);
}}

What is the result of attempting to compile and run the program?

a. Prints: A

b. Prints: B

c. Prints: C

d. Compile-time error

e. Run-time error

f. None of the above

Question 21

class R {
 private void printS1(){System.out.print("R.printS1 ");}
 protected void printS2() {System.out.print("R.printS2 ");}
 protected void printS1S2(){printS1();printS2();}
}
class S extends R {
 private void printS1(){System.out.print("S.printS1 ");}
 protected void printS2(){System.out.print("S.printS2 ");}
 public static void main(String[] args) {
 new S().printS1S2();
}}

What is the result of attempting to compile and run the program?

a. Prints: R.printS1 R.printS2

b. Prints: R.printS1 S.printS2

c. Prints: S.printS1 R.printS2

d. Prints: S.printS1 S.printS2

e. Run-time error

f. Compile-time error

g. None of the above

Question 22

class A {void m1(A a) {System.out.print("A");}}
class B extends A {void m1(B b) {System.out.print("B");}}
class C extends B {void m1(C c) {System.out.print("C");}}
class D {
 public static void main(String[] args) {
 A a1 = new A(); A b1 = new B();
 A c1 = new C(); C c4 = new C();
 a1.m1(c4); b1.m1(c4); c1.m1(c4);
}}

What is the result of attempting to compile and run the program?

a. Prints: AAA

b. Prints: ABC

c. Prints: CCC

d. Compile-time error

e. Run-time error

f. None of the above

12 a d

The data members can not
be directly manipulated by
external code. The
superclass is tightly
encapsulated.

If a class A is not tightly encapsulated, then no subclass of A is tightly
encapsulated.

13 b Prints: B.s1 A.s2 A.s1 A.s2

The variables of a subclass can hide the variables of a superclass or interface.
The variable that is accessed is determined at compile-time based on the type of
the reference--not the run-time type of the object. The two references x and y
refer to the same instance of type B. The name x.s1 uses a reference of type B;
so it refers to the variable s1 declared in class B. The name y.s1 uses a
reference of type A; so it refers to the variable s1 declared in class A.

14 b Prints: ABC

The method invocation expression d1.m1(a1) uses reference d1 of type D to
invoke method m1. Since the reference d1 is of type D, the class D is searched
for an applicable implementation of m1. The methods inherited from the
superclasses, C, B and A, are included in the search. The argument, a1, is a
variable declared with the type A; so method A.m1(A a) is invoked.

15 f Compile-time error

Suppose a superclass method is not private and is accessible to code in a
subclass. If the superclass method is declared static, then any subclass
method sharing the same signature must also be declared static. Similarly, if
the superclass method is declared non-static, then any subclass method sharing
the same signature must also be declared non-static. The attempted declaration of
the non-static method D.printS2 generates a compile-time error; because the
superclass method, C.printS2, is static.

16 b Prints: ABC

Three methods overload the method name m1. Each has a single parameter of
type A or B or C. For any method invocation expression of the form
m1(referenceArgument), the method is selected based on the declared
type of the variable referenceArgument--not the run-time type of the
referenced object. The method invocation expression d1.m1(c1) uses
reference d1 of type D to invoke method m1 on an instance of type D. The
argument, c1, is a reference of type A and the run-time type of the referenced
object is C. The argument type is determined by the declared type of the
reference variable c1--not the run-time type of the object referenced by c1. The
declared type of c1 is type A; so the method m1(A a) is selected. The declared
type of c2 is type B; so the method invocation expression d1.m1(c2)
invokes method m1(B b). The declared type of c3 is type C; so the method
invocation expression d1.m1(c3) invokes method m1(C c).

17 c Prints: F.printS1 E.printS2
A static method is selected based on the compile-time type of the reference--not
the run-time type of the object. A non-static method is selected based on the

run-time type of the object--not the compile-time type of the reference. Both
method invocation expressions, x.printS1() and x.printS2(), use a
reference of the superclass type, E, but the object is of the subclass type, F. The
first of the two expressions invokes an instance method on an object of the
subclass type; so the overriding subclass method is selected. The second invokes
a static method using a reference of the superclass type; so the superclass method
is selected.

18 b Prints: ABC

Three methods overload the method name m1. Each has a single parameter of
type A or B or C. For any method invocation expression of the form
m1(referenceArgument), the method is selected based on the declared
type of the variable referenceArgument--not the run-time type of the
referenced object. The method invocation expression c4.m1(c1) uses
reference c4 of type C to invoke method m1 on an instance of type C. The
argument, c1, is a reference of type A and the run-time type of the referenced
object is C. The argument type is determined by the declared type of the
reference variable c1--not the run-time type of the object referenced by c1. The
declared type of c1 is type A; so the method A.m1(A a) is selected. The
declared type of c2 is type B; so the method invocation expression
c4.m1(c2) invokes method B.m1(B b). The declared type of c3 is type C;
so the method invocation expression c4.m1(c3) invokes method C.m1(C
c).

19 b Prints: P.printS1 Q.printS2

Suppose a method m1 is invoked using the method invocation expression m1().
If m1 is a static member of the class where the invocation expression occurs,
then that is the implementation of the method that is invoked at run-time
regardless of the run-time type of the object. If m1 is non-static, then the selected
implementation is determined at run-time based on the run-time type of the
object. The program invokes method printS1S2 on an instance of class Q.
The body of method printS1S2 contains two method invocation expressions,
printS1() and printS2(). Since method printS1 is static, the
implementation declared in class P is invoked. Since printS2 is non-static
and the run-time type of the object is Q, the invoked method is the one declared
in class Q.

20 a Prints: A

The reference c1 is of the superclass type, A; so it can be used to invoke only
the method m1 declared in class A. The methods that overload the method name
m1 in the subclasses, B and C, can not be invoked using the reference c1. A
method invocation conversion promotes the argument referenced by c2 from
type C to type A, and the method declared in class A is executed. Class A
declares only one method, m1. The single parameter is of type A. Class B
inherits the method declared in class A and overloads the method name with a
new method that has a single parameter of type B. Both methods sharing the
overloaded name, m1, can be invoked using a reference of type B; however, a
reference of type A can be used to invoke only the method declared in class A.
Class C inherits the methods declared in classes A and B and overloads the
method name with a new method that has a single parameter of type C. All three
methods sharing the overloaded name, m1, can be invoked using a reference of
type C; however, a reference of type B can be used to invoke only the method
declared in class B and the method declared in the superclass A. The method
invocation expression c1.m1(c2) uses reference c1 of type A to invoke
method m1. Since the reference c1 is of type A, the search for an applicable

implementation of m1 is limited to class A. The subclasses, B and C, will not be
searched; so the overloading methods declared in the subclasses can not be
invoked using a reference of the superclass type.

21 b Prints: R.printS1 S.printS2

A private method of a superclass is not inherited by a subclass. Even if a
subclass method has the same signature as a superclass method, the subclass
method does not override the superclass method. Suppose a non-static method
m1 is invoked using the method invocation expression m1(). If m1 is a
private member of the class T where the invocation expression occurs, then
the implementation in class T is selected at run-time regardless of the run-time
type of the object. If the non-static method m1 is not private, then the
selected implementation is determined at run-time based on the run-time type of
the object. The program invokes the non-static method printS1S2 on an
instance of class S, so the run-time type is S. The body of method
R.printS1S2 contains two method invocation expressions, printS1()
and printS2(). Since class R contains a private implementation of the
instance method printS1, it is the implementation that is selected regardless
of the run-time type of the object. Since printS2 is not private and not
static, the selected implementation of printS2 depends on the run-time
type of the object. The method printS1S2 is invoked on an instance of class
S; so the run-time type of the object is S, and the implementation of printS2
declared in class S is selected.

22 a Prints: AAA

The declared type of the reference variables, a1, b1 and c1, is the superclass
type, A; so the three reference variables can be used to invoke only the method
m1(A a) that is declared in the superclass, A. The methods that overload the
method name m1 in the subclasses, B and C, can not be invoked using a
reference variable of the superclass type, A. A method invocation conversion
promotes the argument referenced by c4 from type C to type A, and the method
declared in class A is executed.

